WHAT IS A LINE?

Dominique Michelucci, LE2I, CNRS, Dijon, France

ADG 2010, 22-24 July, Munich, Germany

Thanks to the ADG organizers for the invitation.

2. The big picture

I consider the projective geometry (Pappusian plane) as a reentrant Coq functor input: a type of points, a type of lines, fulfiling Coxeter's axioms
output: an algorithmic theory which defines conics, etc, proves theorems, and generates new kind of lines: 3 times constrained conics.

3. Plane of the talk

First part: the Pappus functor (nothing done up to now)
Second part: three times constrained conics are lines, the feature which makes the functor reentrant
4. First part: the Pappus functor

The projective (Pappusian) plane is seen as a functor. Input :
a type of points, a type of lines, which fulfils, say, Coxeter's axioms
algorithms to draw a line, join 2 points, intersect two lines
5. The Pappus functor outputs an algorithmic theory :

- definitions (conics),
- theorems and proofs: Pappus, harmonic conjugate, Desargue, ...

.. Pascal, 3-circles, 4-circles theorem

6. The Pappusian functor outputs also:

- proved (extracted?) algorithms (draw a conic, a dynamic geometry software, an incidence prover based on matroids-hexamys,...)
- new objects: new points, new lines

7. The functor is reentrant

The functor can be applied again on these new points and new lines.
it will generate new theorems (or extend existing ones) and new objects.

First time: conics are the usual ones (degree 2)
Second time: generated "conics" are cubics or quartics; in spite of their higher degree, they are still defined with 5 points.

8. Possible axioms for Pappus theory

A1. 2 distinct points define exactly 1 line.
A2. 2 distinct lines meet in exactly 1 point (possibly at infinity).

A3 (Pappus). if p_{1}, p_{2}, p_{3} alined, and q_{1}, q_{2}, q_{3} alined, then r_{12}, r_{13}, r_{23} alined, with $r_{i j}=p_{i} q_{j} \cap p_{j} q_{i}$.
9. Possible axioms for Pappus theory: Coxeter's

Coxeter's axioms are a bit different, they rely on the definition of projectivity: a bijection between lines, defined by 3 pairs of points and their images. Equivalent to Pappus.

A4 (not characteristic 2) 4 points $p_{1}, p_{2}, p_{3}, p_{4}$, not 3 colinear: the 3 intersection points of the 6 lines are non colinear.
? A5. A projective plane with a complete quadrilateral exists.
Maybe a Coq program will need to explicit other axioms....

We don't want the theory to use facts like: lines are degree 1 curves, conics are degree 2 curves, because

- it will no more be true for non standard lines and conics
- and we want the Pappus functor to be reentrant

11. Why not using algebra and coordinates ?

But, well, maybe it can work too?
And anyway we shall have to prove that a Pappus geometry defines a field (associativity, distributivity..).

12. From axioms, Pappus theory should define :

projectivity (compositions of perspectivities) between 2 lines, between 2 bundles of lines
harmonic conjugate
homography
conics ...

13. Possible definition of conics

Via Pascal's theorem: given $p_{1}, \ldots p_{5}$, the locus of points p_{6}
s.t. opposite sides of the hexagon meet in 3 colinear points.

Hexamys theorem is Pascal in disguise:
An hexamys is an hexagon s.t. opposite sides meet in 3 colinear points.

All permutations of an hexamys are hexamys.

14. Another definition for conics:

It is the locus of $I_{i} \cap I_{i}^{\prime}$ where $I_{i} \in L, l_{i}^{\prime} \in L^{\prime}, L$ and L^{\prime} in projectivity.

The theory should prove that all definitions of conics are equivalent.
15. Then Pappus theory should prove theorems:

Desargue, Pascal, 3-circles, 4-circles, ...

- given 2 conics and 2 intersection points, build the 2 others.
- draw a conic with Pascal's theorem
- prove forced incidences in figures, (say) with matroids and hexamys
- prove a dynamic geometry software...

17. Pappus theory has already been done
several times, say by Vebber \& Young, by Coxeter in "Projective Geometry".

But maybe not in a reentrant way ?
The goal of the game is to redo it in Coq, as a functor, and to do it in a reentrant way.

18. Second part

Three times constrained conics are lines
$\phi(x, y, h)=\left(x^{2}, y^{2}, h^{2}, x y, x h, y h\right)$
$\phi(x, y, h) \cdot Q=0$ is a conic equation. Q lies in a 6 d vector space.

A conic is defined by 5 points, Q is defined (up to its length) by 5 orthogonality conditions: consistent!

If Q is constrained to be orthogonal to 3 independent vectors (eg to pass through 3 points), then Q lies in a vector subspace with rank $6-3=3$: it is a line.

This sketch of proof does not use axioms of Pappus theory :(btw, is it new ? likely no, but do you have a reference ?

20. Possible constraints on a conic vector Q

$$
\begin{aligned}
& C_{1}=(1,-1,0,0,0,0), \quad C_{2}=(0,0,0,1,0,0) \\
& \phi(\pm 1, i, 0)=(1,-1,0, \pm i, 0,0) \\
& \left.C_{3}=(0,0,0,0,0,1), \quad C_{4}=1,0,-1,0,0,1\right) \\
& C_{5}=(0,1,0,0,00), \quad C_{6}=(1,0,0,0,0,1)
\end{aligned}
$$

$$
Q \text { is a circle when } Q \cdot C_{1}=Q \cdot C_{2}=0 \text {. Or when }
$$

$$
Q \cdot \phi(\pm 1, i, 0)=0 . \text { Center lies on line } y=0 \text { if } Q \cdot C_{3}=0
$$

$$
\text { Circle is orthogonal to the unit circle if } Q \cdot C_{4}=0 \text {. }
$$

C_{6} : condition for a circle to cut the unit circle in 2 symmetric points w.r.t. origin.
Q is a parabola with axis $O y$ if $Q \cdot C_{2}=Q \cdot C_{5}=0$.
Being tangent to a fixed line does not give an orthogonality condition.

21. Examples of 3TCC, new lines

- Circles through a fixed point : clines
- Circles with center on a fixed line (Poincaré half plane, a model for hyperbolic plane)
- Circles orthogonal to a fixed circle
- Circles cutting the unit circle in 2 points symmetric \% origin
- Conics passing through 3 fixed (non colinear) points
- Parabolas with Oy axis and passing through a fixed point

22. Pappus theorem for clines

Clines fulfil Pappus property. Thus they can be considered as lines.
23. Harmonic conjugate theorem for clines

Left: for given points O, A, B on a common line, for any point S, for any point T on the line $S A$, the point M is invariant (hint: M is the harmonic conjugate of O relatively to A, B; if O is a point at infinity, M is the middle of $A B$.

Right: all lines are replaced with circles all passing through a fixed point. M is still invariant.

24. Pascal theorem for clines

Points p_{i} lie on the magenta circle. The lines $p_{i} p_{j}$ are replaced with clines (circles through Omega).

The intersection points lie on a common cline (red circle).

25. Desargue for clines

26. Poincaré half plane is Pappusian

27. Conics through 3 fixed points fulfil Pappus

Conics through 3 fixed points fulfil Pappus, thus they are lines.
28. Harmonic conjugate theorem

Left: the harmonic conjugate theorem for naive lines.
Right: the harmonic conjugate theorem for conics passing through 3 fixed points F_{1}, F_{2}, F_{3}.
29. In passing, a regret : tropical lines are not

Jürgen Richter-Gebert et al show that tropical lines do not always fulfil Pappus property.

It is a pity, because otherwise, we could enjoy (rational) tropical witnesses for Geometric Constraints Solving...

The study of the witness gives informations on the system of geometric constaints to solve.
30. Lines-circles-conics should be extended

In theory, Pascal's theorem gives the answer:
the conic through $p_{1}, \ldots p_{5}$ is the locus of points p_{6} s.t. opposite "lines" $p_{1} p_{2}$ and $p_{4} p_{5}, p_{2} p_{3}$ and $p_{5} p_{6}, p_{3} p_{4}$ and $p_{6} p_{1}$ meet in 3 points on the same "line".

A Pappus functor in Coq should help us to consistently generalize lines, circles, conics.

Example: 3 circles theorem.
31. Example of a theorem, 3 circles

Points $1 \cap 2,2 \cap 4,4 \cap 5,5 \cap 1$ are cocylic, as well as $5 \cap 6,6 \cap 3,3 \cap 1,1 \cap 5$. We need to prove that the points $2 \cap 3,3 \cap 6,6 \cap 4,4 \cap 2$ are cocyclic too.
Note $1,2, \ldots$ the orthogonal symmetry rel. to line $1,2, \ldots$
Lemma: 5124 is "cocyclic" $\Rightarrow 5124$ is a translation

Note $1,2, \ldots$ the orthogonal symmetry rel. to line $1,2, \ldots$ Lemma: 5124 is "cocyclic" $\Rightarrow 5124$ is a translation Idem: 6315 is a translation.
Thus $(6315)(5124)=6324$ is a translation, thus is "cocyclic".
Pretty proof, but we can not replace lines with 3TCC :(
33. Example of a theorem, 3 circles, degenerate

case

We need to prove line $4=$ line 6 . As before: 6315 and 5124 are translations. Thus $(6315)(5124)=6324$ as well. Thus 3246 as well. Moreover 32 and 23 are translations (2 // 3). Thus $(23)(3246)=46$ is a translation. Thus $4 / / 6$. But they have a common point ($6 \cap 5$ and $4 \cap 5$), thus they are equal. QED.
34. 3 circles theorem, proof 2

The 3 cubics :

- circle $A B^{\prime} C^{\prime}+$ line $A^{\prime} B C$
-circle $A^{\prime} B C^{\prime}+$ line $A B^{\prime} C$
-circle $A B^{\prime} C^{\prime}+$ line $A^{\prime} B C$
have 8 common points $A B C A^{\prime} B^{\prime} C^{\prime}$ and the two cyclic points Thus (Chasles' theorem) they have a 9 th common point.
This proof does not use Pappus axioms : (

35. Extension of 3 circles theorem

Circles are replaced with conics passing through 2 distinct arbitrary points. These 3 conics have a common point (other than the 2 arbitrary points).

We want to replace standard lines with non standard lines.
36. A generalization of 3-circles which works:

Lines can be replaced with clines.
Proof: just perform an inversion on the standard figure.

37. A generalization which does not work:

Replacing lines with conics passing through 3 fixed points, and circles with circles, is not consistent.
38. A 2nd generalization which does not work:

Replacing lines with cercles with centers on a fixed line, and replacing circles with circles, is not consistent either.

A Coq implementation should give an automatic method for consistent generalizations of lines-circles-conics.
39. A non trivial generalization which works:

Lines are replaced by conics passing through 3 fixed points F_{1}, F_{2}, F_{3}

Circles are replaced by conics passing through F_{1}, F_{2}.
These 3 "circles" have a common point.
40. 4 circles theorem, standard case, proof 1

Proof: the 4 cubics (a circle + "opposite" line) meet in 8 points (2 cyclic points and 6 points of the complete quadrilateral). Thus they meet in a $9 n$th point (Chasles' theorem).
41. 4 circles theorem, standard case, proof 2

By hypothesis, $A C U H$ is cocyclic, $A C U H$ is a translation. HVDA as well. Thus $(A C U H)(H V D A)=A C U V D A$ is a translation, thus CUVDAA $=$ CUVD as well. Thus CUVD is cocyclic. QED. Pretty proof, but does not belong to Pappus theory :(
41. Extension of the 4 circles theorem

Lines are replaced with conics through points A, B, C. $\left(A, B, C, Q_{1}, Q_{3}, Q_{5}\right),\left(A, B, C, Q_{1}, Q_{4}, Q_{6}\right)$, $\left(A, B, C, Q_{2}, Q_{3}, Q_{4}\right),\left(A, B, C, Q_{2}, Q_{5}, Q_{6}\right)$ are "aligned".
Circles are replaced by conics through A, B. The 4 "circles" $K 134\left(A, B, Q_{1}, Q_{3}, Q_{4}\right), K 156, K 235, K 246$ meet in Z.

43. Unnamed theorem: standard case

M^{\prime} is the "symmetric" of M r.t. E. It does not depend on the auxilliary chord $A_{1} A_{2}, B_{1} B_{2}$.

44. Unnamed theorem: standard / clines

45. Unnamed theorem: with conics through
F_{1}, F_{2}, F_{3}

M^{\prime} does not depend on the used chord.
Lines are replaced with conics through F_{1}, F_{2}, F_{3}. The circle is replaced with a circle through F_{1}, F_{2}. (It could be replaced with a conic through F_{1}, F_{2}.)

46. Conclusion: A Pappus functor should permit

- to generate an infinity of new objects (non standard lines), and new theorems
- to consistently extend lines-circles-conics
- to extract a dynamic geometry software handling these new objects
- to generate a prover (hexamys + matroids ?) of forced incidences in figures

Pappus theory has already been formalized (Vebber \&
Young, Coxeter), but not in Coq, not in a reentrant way.
Similar with bootstrap compilers.
Nothing done yet!

