Cancellation Patterns in
 Automatic Geometric Theorem Proving

Jürgen Richter-Gebert and Susanne Apel

Technical University of Munich
July 24, 2010

What is this about?

Incidence Theorems in $\mathbb{R P}^{2}$ like

and two algebraic proving techinques which work for some theorems.
Both

- make heavily use of cancellation
- are constructed from basic building blocks
- look different at first sight - but surprisingly are the same

Running example

Collinearity-Hypotheses:
$(1,2,3)$,

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6)$,

Running example

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$,

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$,
$(1,6,8)$,

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$,
$(1,6,8),(3,4,8)$,

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$,
$(1,6,8),(3,4,8),(1,5,9)$,

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$,
$(1,6,8),(3,4,8),(1,5,9),(2,4,9)$

Running example

Collinearity-Hypotheses:
$(1,2,3),(4,5,6),(2,6,7),(3,5,7)$, $(1,6,8),(3,4,8),(1,5,9),(2,4,9)$

Conclusion:
Point-Triple $(7,8,9)$ is collinear as well!

Running example

Collinearity-Hypotheses: $(1,2,3),(4,5,6),(2,6,7),(3,5,7)$, $(1,6,8),(3,4,8),(1,5,9),(2,4,9)$

Conclusion:
Point-Triple $(7,8,9)$ is collinear as well!
later on: non-degeneracy assumptions when needed.

Content

(1) A binomial proof for Pappus's theorem
(2) Ceva-Menelaus Proofs
(3) From a binomial proof to a Ceva-Menelaus proof

Content

(1) A binomial proof for Pappus's theorem

(2) Ceva-Menelaus Proofs

(3) From a binomial proof to a Ceva-Menelaus proof

Preliminaries: From Grassmann-Plücker relations to biquadratic equations

Grassmann-Plücker relations: $A, B, C, X, Y \in \mathbb{R} \mathbb{P}^{2}$

$$
[A B C][A X Y]-[A B X][A C Y]+[A B Y][A C X]=0
$$

$[* * *]$ - determinant (of homogeneous coordinates) of three points.
$((A, B, C)$ or $(A, X, Y) \quad$ are collinear $)$

$$
\Longleftrightarrow[A B X][A C Y]=[A B Y][A C X]
$$

Definition

$[A B X][A C Y]=[A B Y][A C X]-$ biquadratic equations.
\rightarrow building blocks of binomial proofs.

A binomial Proof for Pappus's Theorem

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123) \quad \Longrightarrow \quad[124][137]=[127][134]$

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$[124][137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$[124][137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$[124][137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=[421][497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754][731]$

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$[124][137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=[421][497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754][731]$

A binomial Proof for Pappus's Theorem

COLL (123)	\Longrightarrow	$[137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754][731]$

We add non-degeneracy assumptions: The triples $(1,2,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

COLL (123)	\Longrightarrow	$[137]=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754][731]$

We add non-degeneracy assumptions: The triples $(1,2,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7)$
shall not be collinear

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$=[127][134]$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[721][764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7)$
shall not be collinear

A binomial Proof for Pappus's Theorem

COLL (123)	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7)$
shall not be collinear

A binomial Proof for Pappus's Theorem

COLL (123)	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=r[497]$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487][431]=[481][437]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[764]=[724][761]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7)$
shall not be collinear

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[764]=[481][437]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[754][761]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[154][197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=[451][467]$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[764]=[481][437]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[724][761]$

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

$\operatorname{COLL}(123)$	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[467]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[481][437]$

We add non-degeneracy assumptions: The triples
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

COLL (123)	\Longrightarrow	$=$
$\operatorname{COLL}(159)$	\Longrightarrow	$[197]=[157][194]$
$\operatorname{COLL}(168)$	\Longrightarrow	$[184][167]=[187][164]$
$\operatorname{COLL}(249)$	\Longrightarrow	$[427][491]=$
$\operatorname{COLL}(456)$	\Longrightarrow	$[457][461]=$
$\operatorname{COLL}(348)$	\Longrightarrow	$[487]$
$\operatorname{COLL}(267)$	\Longrightarrow	$[467]$
$\operatorname{COLL}(357)$	\Longrightarrow	$[751][734]=[481][437]$

We add non-degeneracy assumptions: The triples
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7)$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4)$
shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7)$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7)$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$, $(1,6,7),(1,6,4), \ldots$ shall not be collinear

A binomial Proof for Pappus's Theorem

We add non-degeneracy assumptions: The triples $(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots,(7,1,4)$ shall not be collinear

Natural representation of incidence theorems

```
Incidence Theorems
T}=(\mathbf{H},\mathbf{B},C)
H - collinearity hypotheses
B - non-degeneracy assumptions (bases)
C - Conclusion
encoded by triples (of indices) of points.
```

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724][761]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724]][61]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$
$\operatorname{COLL}(714)$	

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724][761]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724]][61]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$
$\operatorname{COLL}(714)$	

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724][761]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724][761]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$
$\operatorname{COLL}(714)$	

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to identify the non-degeneracy assumptions B?

Triples of points in \mathbf{B} :

So:
To each incidence theorem, there are reasonable intrinsic and algorithmically good-natured non-degeneracy assumptions!

How to identify the non-degeneracy assumptions \mathbf{B} ?

Recall:

$\operatorname{COLL}(123)$	$\Longrightarrow[124][137]=[127][134]$
$\operatorname{COLL}(159)$	$\Longrightarrow[154][197]=[157][194]$
$\operatorname{COLL}(168)$	$\Longrightarrow[184][167]=[187][164]$
$\operatorname{COLL}(249)$	$\Longrightarrow[427][491]=[421][497]$
$\operatorname{COLL}(456)$	$\Longrightarrow[457][461]=[451][467]$
$\operatorname{COLL}(348)$	$\Longrightarrow[487][431]=[481][437]$
$\operatorname{COLL}(267)$	$\Longrightarrow[721][764]=[724][761]$
$\operatorname{COLL}(357)$	$\Longrightarrow[751][734]=[754][731]$
$\operatorname{COLL}(789)$ or	$\Longleftrightarrow[784][791]=[781][794]$
$\operatorname{COLL}(714)$	

non-degeneracy triples:
$(1,2,4),(1,3,7),(1,2,7),(1,3,4),(1,5,4),(1,5,7),(1,9,4),(1,8,4)$,
$(1,6,7),(1,6,4), \ldots$ and $(7,1,4)$

How to find a proof

- state all biquadratic equations, e.g. $[A B X][A C Y]=[A B Y][A C X]$
- take the logarithm $\leadsto \log [A B X]+\log [A C Y]=\log [A B Y]+\log [A C X]$
- $\log [* * *]$'s \rightarrow formal symbols
- solve a linear equation system
\rightarrow polynomial algorithm (R-G)
Subtility: permutations inside the brackets

Content

(1) A binomial proof for Pappus's theorem

(2) Ceva-Menelaus Proofs
(3) From a binomial proof to a Ceva-Menelaus proof

Building blocks for this Proof

In an affine Setup with oriented lengths:

Ceva's theorem

$\frac{|A X|}{|X B|} \cdot \frac{|B Y|}{|Y C|} \cdot \frac{|C Z|}{|Z A|}=1$

Menelaus's theorem

$$
\frac{|A X|}{|X B|} \cdot \frac{|B Y|}{|Y C|} \cdot \frac{|C Z|}{|Z A|}=-1
$$

one edge of the triangle \leftrightarrow one ratio in the formula
\longrightarrow building blocks for Ceva-Menelaus proofs!

Affine Cancellation

$\frac{|A Y|}{|Y B|} \cdot \frac{|B X|}{|X C|} \cdot \frac{|C Z|}{|Z A|} \cdot \frac{|B V|}{|V D|} \cdot \frac{|D W|}{|W C|} \cdot \frac{|C X|}{|X B|}=1 \quad \Leftrightarrow \quad \frac{|A Y|}{|Y B|} \cdot \frac{|C Z|}{|Z A|} \cdot \frac{|B V|}{|V D|} \cdot \frac{|D W|}{|W C|}=1$

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

$$
\Delta \cdot \Delta+\Delta=
$$

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

Ceva-Menelaus Proofs

A "small" triangulation of a torus:

Content

(1) A binomial proof for Pappus's theorem

(2) Ceva-Menelaus Proofs

(3) From a binomial proof to a Ceva-Menelaus proof

Reconsider the binomial proof of Pappus's Theorem

$$
\begin{aligned}
& {[124][137]=[127][134] \Leftrightarrow \frac{[124][137]}{[127][134]}=1} \\
& {[154][197]=[157][194] \Leftrightarrow \frac{[154][197]}{[157][194]}=1} \\
& {[184][167]=[187][164] \Leftrightarrow \frac{[184][167]}{[187][164]}=1} \\
& {[427][491]=[421][497] \Leftrightarrow \frac{[427][49]}{[421][497]}=1 \quad \frac{[124][137]}{[127][134]} \cdot \frac{[154][197]}{[157][194]} \cdot \frac{[184][167]}{[187][164]} .} \\
& {[457][461]=[451][467] \quad \Leftrightarrow \quad \frac{[4577][461]}{[451][467]}=1 \quad \frac{[427][491]}{[421][497]} \cdot \frac{[457][461]}{[451][467]} \cdot \frac{[487][431]}{[481][437]} .} \\
& {[487][431]=[481][437] \Leftrightarrow \frac{[487][431]}{[481][437]}=1 \quad \frac{[721][764]}{[724][761]} \cdot \frac{[751][734]}{[754][731]}=\frac{[784][791]}{[781][794]}} \\
& {[721][764]=[724][761] \Leftrightarrow \frac{[721][764]}{[724][761]}=1} \\
& {[751][734]=[754][731] \quad \Leftrightarrow \quad \frac{[751][734]}{[754][731]}=1} \\
& {[784][791]=[781][794] \quad \Leftrightarrow \frac{[781][794]}{[784][791]}=1} \\
& \frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \frac{[461]}{[467]} \cdot \\
& \frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{aligned}
$$

Deriving a graph

$$
\begin{array}{r}
\frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \frac{[461]}{[467]} \cdot \\
\\
\\
\frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{array}
$$

Deriving a graph

$$
\begin{array}{r}
\frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \frac{[461]}{[467]} \cdot \\
\\
\\
\frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{array}
$$

Deriving a graph

$$
\begin{array}{r}
\frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \frac{[461]}{[467]} \cdot \\
\\
\\
\frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{array}
$$

Deriving a graph

$$
\begin{array}{r}
\frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \frac{[461]}{[467]} \cdot \\
\\
\\
\frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{array}
$$

Deriving a graph

$$
\begin{array}{r}
\frac{[124]}{[127]} \cdot \frac{[137]}{[134]} \cdot \frac{[154]}{[157]} \cdot \frac{[197]}{[194]} \cdot \frac{[184]}{[187]} \cdot \frac{[167]}{[164]} \cdot \frac{[427]}{[421]} \cdot \frac{[491]}{[497]} \cdot \frac{[457]}{[451]} \cdot \cdot \frac{[461]}{[467]} \cdot \\
\\
\\
\frac{[487]}{[481]} \cdot \frac{[431]}{[437]} \cdot \frac{[721]}{[724]} \cdot \frac{[764]}{[761]} \cdot \frac{[751]}{[754]} \cdot \frac{[734]}{[731]} \cdot \frac{[781]}{[784]} \cdot \frac{[794]}{[791]}=1
\end{array}
$$

\rightarrow Graph:
vertices: (non-zero) brackets edges: between vertices differing in one index

Roadmap

Two tasks:

- Associating graph triangles with Ceva and Menelaus triangles
- Finding triangles in every such graph!

Interpreting graph-triangles

Two combinatorial kinds of triangles:

Graph-triangles will be translated to Ceva and Menelaus triangles:

From lengths to brackets

Ceva's theorem

$$
\frac{|A X|}{|X B|} \cdot \frac{|B Y|}{|Y C|} \cdot \frac{|C Z|}{|Z A|}=1
$$

Menelaus's theorem

$$
\frac{|A X|}{|X B|} \cdot \frac{|B Y|}{|Y C|} \cdot \frac{|C Z|}{|Z A|}=-1
$$

\searrow

A Tool:

affine $\frac{|A x|}{|\times B|}=\frac{[A D E]}{[B E D]}$ (projective)
$\frac{[A D C]}{\left[\begin{array}{ll}B C D\end{array}\right]} \cdot \frac{[B A D]}{\left[\begin{array}{ll}C D A\end{array}\right]} \cdot \frac{[C D B]}{[A B D]}=1 \quad\left[\begin{array}{ll}{[A D E]}\end{array}\right] \cdot \frac{[B D E]}{[B E D]} \cdot \frac{[C D E]}{[C E D]} \cdot \frac{[}{[A E D]}=-1$

The base triangles corresponding to Ceva and Menelaus triangles

Which triangles should be glued together?

Back to Pappus

Which triangles should be glued together? - We know:

$$
[721][764]=[724][761] \Leftrightarrow \frac{[721][764]}{[274][671]}=1 \Leftrightarrow \frac{[172]}{[427]}=\frac{[167]}{[476]}
$$

Back to Pappus

Which triangles should be glued together? - We know:

$$
[721][764]=[724][761] \Leftrightarrow \frac{[721][764]}{[274][671]}=1 \Leftrightarrow \frac{[172]}{[427]}=\frac{[167]}{[476]}
$$

Back to Pappus

Which triangles should be glued together? - We know:

$$
\begin{aligned}
{[721][764]=[724][761] } & \Leftrightarrow \frac{[721][764]}{[274][671]}=1 \Leftrightarrow \frac{[172]}{[427]}=\frac{[167]}{[476]} \\
& \Leftrightarrow \frac{|1 x|}{|x 4|}=\frac{|1 y|}{|y 4|} \Leftrightarrow x=y
\end{aligned}
$$

Back to Pappus

So:

7

Back to Pappus

Roadmap

Two tasks:

- Associating graph triangles with Ceva and Menelaus triangles
- Finding triangles in every such graph!

On finding triangles in every such a graph

Pappus: misleading example!

misleading picture:

In general

- n-cycles
- 2 generic points $g, h \leadsto$ new vertices in the graph

- It can be shown: number of Menelaus triangles is even

Conclusion

$$
\begin{aligned}
& {[* * *][* * *]=[* * *][* * *]}
\end{aligned}
$$

Binomial Proofs	Ceva-Menelaus Proofs
cancellation patterns on $[* * *]$	cancellation patterns on edges
easy to verify	visual proofs
algorithmically feasible	topological information
algebraic flavor	geometric flavor

