On the Complexity of the Reachability Problem in Dynamic Geometry

Thorsten Orendt

The Reachability Problem (Reach)

Can you walk continuously from one instance to another specific one?
starting instance

terminal instance

The Reachability Problem (Reach)

Can you walk continuously from one instance to another specific one?

starting instance

terminal instance

What do we know so far?

What do we know so far?

- complexity depends on ...
... power of allowed geometric operations
... restriction on movements of free elements

What do we know so far?

- complexity depends on ...
... power of allowed geometric operations
... restriction on movements of free elements
- if operations algebraically equivalent to solving quadratic polynomials, then Reach is ...
... decidable over \mathbb{C} (Denner-Broser;ADG’04)
... NP-hard over \mathbb{R} (Richter-Gebert, Kortenkamp; 2000)

What do we know so far?

- complexity depends on ...
... power of allowed geometric operations
... restriction on movements of free elements
- if operations algebraically equivalent to solving quadratic polynomials, then Reach is ...
... decidable over \mathbb{C} (Denner-Broser;ADG'04)
... NP-hard over \mathbb{R} (Richter-Gebert, Kortenkamp; 2000)
- no lower bounds over \mathbb{C}

We focus on a restriction of Reach

We focus on a restriction of Reach

- considered operations
- constant point
- join two points, meet two lines
- intersection line and conic
- intersection line and cubic curve

We focus on a restriction of Reach

- considered operations

algebraically equivalent to

- constant point constant
- join two points, meet two lines arithmetics
- intersection line and conic
- intersection line and cubic curve

We focus on a restriction of Reach

- considered operations
- constant point
- join two points, meet two lines
- intersection line and conic
- intersection line and cubic curve

algebraically equivalent to

constant

arithmetics
square root cubic root

- only movements of free elements with bounded length

We focus on a restriction of Reach

- considered operations algebraically equivalent to
- constant point
- join two points, meet two lines
- intersection line and conic
- intersection line and cubic curve
constant
arithmetics
square root cubic root
- only movements of free elements with bounded length

goal: show this restriction is NP-hard

From geometry to algebra

From geometry to algebra

 geometric objects complex numbers \mathbb{C}

From geometry to algebra

complex numbers \mathbb{C}
geometric operations

operations on \mathbb{C}

From geometry to algebra

complex numbers \mathbb{C}
operations on \mathbb{C}
construction sequence

geometric SLPs (GSPs)

From geometry to algebra

complex numbers \mathbb{C}
operations on \mathbb{C}
geometric operations

construction sequence

geometric SLPs (GSPs)
geometric instances of a construction

From geometry to algebra

complex numbers \mathbb{C}
operations on \mathbb{C}
geometric operations

geometric SLPs (GSPs)
geometric instances of a construction
 instances of a GSP

Reach in dynamic geometry

Reach for GSPs

Considered operations
 (performed at unit costs)

free \mathbb{C}
constants const $_{z}=\{z\}$

+	$=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}+z_{2}=w\right\}$
arithmetic	$-=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}-z_{2}=w\right\}$
operations	$*=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1} \cdot z_{2}=w\right\}$
	$/=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}=z_{2} \cdot w \wedge z_{2} \neq 0\right\}$
roots	$\sqrt{ }=\left\{(z, w) \in \mathbb{C}^{2} \mid z=w^{2} \wedge z \neq 0\right\}$
	$\sqrt[3]{ }=\left\{(z, w) \in \mathbb{C}^{2} \mid z=w^{3} \wedge z \neq 0\right\}$

Considered operations (performed at unit costs)

free constants const $_{z}=\{z\}$
arithmetic

$$
+=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}+z_{2}=w\right\}
$$

$$
-=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}-z_{2}=w\right\}
$$

$$
*=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1} \cdot z_{2}=w\right\}
$$

$$
/=\left\{\left(z_{1}, z_{2}, w\right) \in \mathbb{C}^{3} \mid z_{1}=z_{2} \cdot w \wedge z_{2} \neq 0\right\}
$$

roots

$$
\begin{aligned}
\sqrt{ } & =\left\{(z, w) \in \mathbb{C}^{2} \mid z=w^{2} \wedge z \neq 0\right\} \\
\sqrt[3]{ } & =\left\{(z, w) \in \mathbb{C}^{2} \mid z=w^{3} \wedge z \neq 0\right\}
\end{aligned}
$$

Why no roots of zero?

Why no roots of zero?

Why no roots of zero?

Why no roots of zero?

Why no roots of zero?

GSPs and their instances

GSPs and their instances

A GSP is a sequence $\underbrace{\omega_{1-p}, \ldots, \omega_{0}}_{\text {free }}, \underbrace{\omega_{1}, \ldots, \omega_{q}}_{\text {dependent }}$
of operations with specified input assignments

GSPs and their instances

of operations with specified input assignments

An instance of a GSP is an assignment of complex numbers

$$
Z=\left(z_{1-p}, \ldots, z_{p}\right) \in \mathbb{C}^{p+q}
$$

so that the relations of dependent operations $\omega_{1}, \ldots, \omega_{q}$ are satisfied

Reach - algebraic version

Reach - algebraic version

given:

GSP and two instance Z, W

Reach - algebraic version

given:
 GSP and two instance Z, W

problem: Are there continous mappings

$$
\begin{array}{r}
\mu_{1-p}, \ldots, \mu_{0}:[0,1]
\end{array} \rightarrow \stackrel{\mathbb{C}}{ }
$$

so that

$$
\left(\mu_{1-p}(t), \ldots, c_{q}(t)\right)
$$

forms an instance for all $t \in[0,1]$ and

$$
\left(\mu_{1-p}(0), \ldots, c_{q}(0)\right)=Z \wedge\left(\mu_{1-p}(1), \ldots, c_{q}(1)\right)=W
$$

A variant of 3SAT

bool. variables	b_{1}, \ldots, b_{n}
literals	$\left\{b_{1}, \ldots, b_{n}, \neg b_{1}, \ldots, \neg b_{n}\right\}$
clauses	$C_{j}=l_{j, r} \vee l_{j, s} \vee l_{j, t} \quad\left(l_{j, k} \in\left\{b_{k}, \neg b_{k}\right\}\right)$
formula	$C=C_{1} \wedge \ldots \wedge C_{m}$
truth assign.	$\chi=\left(b_{1}, \ldots, b_{n}\right) \in\left\{\right.$ true,${\text { false }\}^{n}}^{n}$

A variant of 3SAT

bool. variables	b_{1}, \ldots, b_{n}
literals	$\left\{b_{1}, \ldots, b_{n}, \neg b_{1}, \ldots, \neg b_{n}\right\}$
clauses	$C_{j}=l_{j, r} \vee l_{j, s} \vee l_{j, t} \quad\left(l_{j, k} \in\left\{b_{k}, \neg b_{k}\right\}\right)$
formula	$C=C_{1} \wedge \ldots \wedge C_{m}$
truth assign.	$\chi=\left(b_{1}, \ldots, b_{n}\right) \in\left\{\right.$ true, ${\text { false }\}^{n}}$

Exact 3SAT: Is there a truth assigment that makes exactly one literal true in each clause?

A variant of 3SAT

bool. variables	b_{1}, \ldots, b_{n}
literals	$\left\{b_{1}, \ldots, b_{n}, \neg b_{1}, \ldots, \neg b_{n}\right\}$
clauses	$C_{j}=l_{j, r} \vee l_{j, s} \vee l_{j, t} \quad\left(l_{j, k} \in\left\{b_{k}, \neg b_{k}\right\}\right)$
formula	$C=C_{1} \wedge \ldots \wedge C_{m}$
truth assign.	$\chi=\left(b_{1}, \ldots, b_{n}\right) \in\left\{\right.$ true, false n

Exact 3SAT: Is there a truth assigment that makes exactly one literal true in each clause?

Outline reduction

I. From 3SAT formulas to functions
2. From truth assignments to analytic continuations
3. Counting multiplicities
4. Using the bounded length
5. Assembling the parts

Basic idea

Basic idea

$l_{j, k}$ literal

$x_{j, k}$ function

Transfer

Basic idea

$l_{j, k} \quad$ literal

γ closed path
Transfer

$\chi \underset{\text { assignment }}{\text { truth }}$

$x_{j, k}$ function

so that

> true
false $\quad \Longleftrightarrow \quad x_{j, k}^{\gamma}(0)=1$

I. Formulas \rightarrow Functions

$$
\begin{array}{cl}
\vee & \rightarrow \\
l_{j, k}=b_{k} & \rightarrow \\
x_{j, k}(z)=\frac{\sqrt{k}-\sqrt{k+z}}{2 \sqrt{k}} \\
l_{j, k}=\neg b_{k} & \rightarrow x_{j, k}(z)=\frac{\sqrt{k}+\sqrt{k+z}}{2 \sqrt{k}}
\end{array}
$$

I. Formulas \rightarrow Functions

$$
\begin{aligned}
\vee & \rightarrow * \\
l_{j, k}=b_{k} & \rightarrow x_{j, k}(z)=\frac{\sqrt{k}-\sqrt{k+z}}{2 \sqrt{k}} \sum_{\substack{\text { principal } \\
\text { branch }}}
\end{aligned}
$$

I. Formulas \rightarrow Functions

$$
\begin{aligned}
V & \rightarrow * \\
l_{j, k}=b_{k} & \rightarrow x_{j, k}(z)=\frac{\sqrt{k}-\sqrt{k+z}}{2 \sqrt{k}} \underbrace{}_{\substack{k \\
\text { principal } \\
\text { branch }}} . \sqrt{k+z}
\end{aligned}
$$

$$
C_{j}=l_{j, r} \vee l_{j, s} \vee l_{j, t} \quad \rightarrow \quad X_{j}(z)=\prod \quad x_{j, k}(z)
$$

$$
k \in\{r, s, t\}
$$

I. Formulas \rightarrow Functions

$$
\begin{aligned}
\vee & \rightarrow * \\
l_{j, k}=b_{k} & \rightarrow x_{j, k}(z)=\frac{\sqrt{k}-\sqrt{k+z}}{2 \sqrt{k}} \underbrace{\text { branch }}_{\text {principal }}
\end{aligned}
$$

$$
C_{j}=l_{j, r} \vee l_{j, s} \vee l_{j, t} \quad \rightarrow \quad X_{j}(z)=\prod \quad x_{j, k}(z)
$$

$$
k \in\{r, s, t\}
$$

$$
C=C_{1} \wedge \ldots \wedge C_{m} \quad \rightarrow \quad X(z)=\left(X_{1}(z), \ldots, X_{m}(z)\right)
$$

2. Truth assign. \rightarrow analy. continuations

$$
\chi=\left(b_{1}, \ldots, b_{n}\right) \in\{\text { true }, \text { false }\}^{n}
$$

 numbers of a closed path γ starting at $z=0$

$$
\eta(\gamma,-k) \in \begin{cases}2 \mathbb{Z}, & b_{k}=\text { true } \\ 2 \mathbb{Z}+1, & b_{k}=\text { false }\end{cases}
$$

Interplay $x_{j, k}$ and γ

$$
l_{j, k}=b_{k}
$$

$$
b_{k}=t r u e
$$

Interplay $x_{j, k}$ and γ

$$
l_{j, k}=b_{k} \rightleftarrows \text { true }<b_{k}=\text { true }
$$

Interplay $x_{j, k}$ and γ

$$
l_{j, k}=b_{k} \rightleftarrows \text { true } \longleftarrow b_{k}=\text { true }
$$

$$
x_{j, k}(z)=\frac{\sqrt{k}-\sqrt{k+z}}{2 \sqrt{k}}
$$

Interplay $x_{j, k}$ and γ

Interplay $x_{j, k}$ and γ

Interplay $x_{j, k}$ and γ

Interplay $x_{j, k}$ and γ

$$
l_{j, k}=b_{k} \longleftarrow \text { false } b_{k}=\text { false }
$$

What have we achieved so far?

$$
\begin{gathered}
\text { There is } \gamma \text { so that } \\
X_{C}^{\gamma}(0)=(0, \ldots, 0) \in \mathbb{C}^{m} \\
\Downarrow \\
C \text { satisfiable }
\end{gathered}
$$

What have we achieved so far?

$$
\begin{gathered}
\text { There is } \gamma \text { so that } \\
X_{C}^{\gamma}(0)=(0, \ldots, 0) \in \mathbb{C}^{m} \\
\Downarrow \\
C \text { satisfiable }
\end{gathered}
$$

Why we are not done?

What have we achieved so far?

$$
\begin{gathered}
\text { There is } \gamma \text { so that } \\
X_{C}^{\gamma}(0)=(0, \ldots, 0) \in \mathbb{C}^{m} \\
\Downarrow \\
C \text { satisfiable }
\end{gathered}
$$

Why we are not done?
specifying a terminal instance
knowing a satisfying truth assignment

3. Counting multiplicities

How many literals are true in a clause?

How many factors vanish in $X_{j}^{\gamma}(0)$?

idea: use the three branches of $\sqrt[3]{X_{j}(z)}$ as counters

3. Counting multiplicities

- set $Y_{j}(z)=\sqrt[3]{X_{j}(z)} \quad$ (prinicipal branch)
- denote branches of cubic root by $0,1,2$

3. Counting multiplicities

- set $Y_{j}(z)=\sqrt[3]{X_{j}(z)} \quad$ (prinicipal branch)
- denote branches of cubic root by $0,1,2$

3. Counting multiplicities

How to use it?

claim in starting instance

Y_{j} lies on branch 0

claim in terminal instance

$$
Y_{j}^{\gamma} \text { lies on branch I }
$$

3. Counting multiplicities

How to use it?

claim in starting instance

Y_{j} lies on branch 0

claim in terminal instance

$$
\frac{\eta(\gamma, 0)}{2} \cdot M \quad(\bmod 3)=1
$$

3. Counting multiplicities

How to use it?

claim in starting instance

Y_{j} lies on branch 0

claim in terminal instance

4. Using bounded length

additional claims:

- $|\gamma|<2(n+3)+\varepsilon$, where $0<\varepsilon \leq 1$
- γ circle around $-n-2$ and 1

$$
-n-2
$$

5.Assembling the parts

exact 3SAT has answer YES

$Y_{1}^{\gamma}, \ldots, Y_{m}^{\gamma}$
lie on branch |

5. Assembling the parts

$\stackrel{-n-2}{n} \ldots \ldots$

Idea proof:

I. adjusting multiplicities in X_{j}
2. switching $Y_{j}(z)=\sqrt[3]{X_{j}(z)}$ to branch I
3. reverse point I

Thank you for the attention!

