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• if operations algebraically equivalent to solving 
quadratic polynomials, then Reach is ...

... decidable over      (Denner-Broser; ADG’04)  

... NP-hard over       (Richter-Gebert, Kortenkamp; 2000)

• no lower bounds over  C

C
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We focus on a restriction of Reach

• considered operations
- constant point

- join two points, meet two lines
- intersection line and conic 

- intersection line and cubic curve 

4

• only movements of free elements with bounded 
length

goal: show this restriction is NP-hard

algebraically equivalent to
constant

arithmetics
square root

cubic root
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From geometry to algebra

5

geometric objects complex numbers

geometric operations operations on 

construction sequence geometric SLPs (GSPs)

geometric instances
of a construction

instances of a GSP

Reach in dynamic 
geometry Reach for GSPs

C

C
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Considered operations

C
constz = {z}

+ =
{
(z1, z2, w) ∈ C3

∣∣ z1 + z2 = w
}

− =
{
(z1, z2, w) ∈ C3

∣∣ z1 − z2 = w
}

∗ =
{
(z1, z2, w) ∈ C3

∣∣ z1 · z2 = w
}

/ =
{
(z1, z2, w) ∈ C3

∣∣ z1 = z2 · w ∧ z2 %= 0
}

free

constants

arithmetic
operations

roots

(performed at unit costs)

√ =
{
(z, w) ∈ C2

∣∣ z = w2 ∧ z $= 0
}

3
√ =

{
(z, w) ∈ C2

∣∣ z = w3 ∧ z $= 0
}
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A GSP is a sequence                                       

of operations with specified input assignments

8

dependentfree

An instance of a GSP is an assignment of complex 
numbers 

so that the relations of dependent operations
are satisfied

GSPs and their instances

ω1−p, . . . ,ω0︸ ︷︷ ︸
, ω1, . . . ,ωq︸ ︷︷ ︸

Z = (z1−p, . . . , zp) ∈ Cp+q

ω1, . . . ,ωq
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Reach - algebraic version

given:        GSP and two instance

problem:   Are there continous mappings

so that

forms an instance for all               and

c1, . . . , cq : [0, 1]→ C
µ1−p, . . . , µ0 : [0, 1]→ C

Z, W

(µ1−p(t), . . . , cq(t))

(µ1−p(0), . . . , cq(0)) = Z ∧ (µ1−p(1), . . . , cq(1)) = W

t ∈ [0, 1]



Thorsten Orendt24. July 2010 10

A variant of 3SAT
bool. variables

literals

clauses

formula

truth assign.

b1, . . . , bn

{b1, . . . , bn,¬b1, . . . ,¬bn}

C = C1 ∧ . . . ∧ Cm

Cj = lj,r ∨ lj,s ∨ lj,t
(
lj,k ∈ {bk,¬bk}

)

(b1, . . . , bn) ∈ {true, false}nχ =
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C = C1 ∧ . . . ∧ Cm

Cj = lj,r ∨ lj,s ∨ lj,t
(
lj,k ∈ {bk,¬bk}

)

(b1, . . . , bn) ∈ {true, false}n

Exact 3SAT: Is there a truth assigment that makes 
exactly one literal true in each clause? NP-complete

χ =
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1. From 3SAT formulas to functions

2. From truth assignments to analytic continuations

3. Counting multiplicities

4. Using the bounded length

5. Assembling the parts

11

Outline reduction
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Basic idea

literal

truth
assignment

function

closed path

so that

lj,k

χ

xj,k

γ

xγ
j,k(0) = 0

xγ
j,k(0) = 1

true

false

Transfer

makesχ lj,k
⇐⇒

⇐⇒
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1. Formulas → Functions
∨ → ∗

lj,k = bk → xj,k(z) =
√

k −
√

k + z

2
√

k

lj,k = ¬bk → xj,k(z) =
√

k +
√

k + z

2
√

k
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Cj = lj,r ∨ lj,s ∨ lj,t → Xj(z) =
∏

k∈{r,s,t}

xj,k(z)

C = C1 ∧ . . . ∧ Cm → X(z) =
(
X1(z), . . . , Xm(z)

)
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branch
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2. Truth assign. → analy. continuations

χ = (b1, . . . , bn) ∈ {true, false}n

η(γ,−k) ∈
{

2Z, bk = true
2Z + 1, bk = false

encode     by the winding
numbers of a closed path
starting at 

χ

γ
z = 0
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Interplay          and xj,k γ

lj,k = bk bk = true
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Interplay          and xj,k γ

lj,k = bk bk = true

η(γ,−k) ∈ 2Z

xγ
j,k(0) = 0

xj,k(z) =
√

k −
√

k + z

2
√

k

does not change

true
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Interplay          and xj,k γ

lj,k = bk

xj,k(z) =
√

k −
√

k + z

2
√

k

xγ
j,k(0) = 1

bk = false

η(γ,−k) ∈ 2Z + 1
does change

false
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What have we achieved so far?

There is    so thatγ

satisfiableC

Xγ
C(0) =

(
0, . . . , 0) ∈ Cm

⇐
⇒
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What have we achieved so far?

There is    so thatγ

satisfiableC

Xγ
C(0) =

(
0, . . . , 0) ∈ Cm

⇐
⇒

Why we are not done?
specifying a 

terminal instance
knowing a satisfying 

truth assignment
⇐⇒
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3. Counting multiplicities

How many literals are true in a clause?

How many factors vanish in            ?Xγ
j (0)

3
√

Xj(z)idea: use the three branches of                 as counters 
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3. Counting multiplicities

• set                                 (prinicipal branch)

• denote branches of cubic root by 0,1,2

Yj(z) = 3
√

Xj(z)
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3. Counting multiplicities

• set                                 (prinicipal branch)

• denote branches of cubic root by 0,1,2

lies on branch 

Yj(z) = 3
√

Xj(z)

Y γ
j

η(γ, 0)
2

· M (mod 3)=⇒

number of vanishing 
factors in X

γ
j (0)

nested 
roots
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3. Counting multiplicities

How to use it?

claim in terminal instance

claim in starting instance

Yj lies on branch 0

Y γ
j lies on branch 1
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How to use it?
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claim in starting instance
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3. Counting multiplicities

η(γ, 0)
2

· M (mod 3)

How to use it?

= 1must 
control it

claim in terminal instance

claim in starting instance

Yj lies on branch 0
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4. Using bounded length

additional claims:

•                              ,  where

•      circle around              and   

|γ| < 2(n + 3) + ε 0 < ε ≤ 1

γ −n− 2 1

−n− 2 0 1

γ
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5. Assembling the parts

exact 3SAT
has answer

YES
⇐⇒

−n− 2 0 1

γ

Y γ
1 , . . . , Y γ

m

lie on branch 1
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5. Assembling the parts

Idea proof:

1. adjusting multiplicities in      

2. switching                             to branch 1

3. reverse point 1 

Xj

−n− 2 0 1

γ

Yj(z) = 3
√

Xj(z)



Thank you for the 
attention!


