Formal Representation and Automated
Transformation of Geometric Statements

Xiaoyu Chen
Beihang University, Beijing, China

July 24, 2010

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 1/30

Outline

@ Motivation

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 2/30

Start with Geometry Software

Geometry problems (drawing or proving) are specified by applying similar

(or same) concepts which are implemented differently in these systems.

Table: Constructive style

Cinderella

GeoGebra

Perpendicular(a;A)

PerpendicularLine[A,a]

Circumcircle(A;B;C)

Circle[A,B,C]

AngleBisector(m;n;A)

AngleBisector[m,n]

X. Chen (BUAA)

ADG "10 (Munich)

July 24, 2010

3/30

Start with Geometry Software

Geometry problems (drawing or proving) are specified by applying similar

(or same) concepts which are implemented differently in these systems.

Table: Constructive style

Cinderella GeoGebra
Perpendicular(a;A) PerpendicularLine[A,a]
Circumcircle(A;B;C) Circle[A,B,C]
AngleBisector(m;n;A) AngleBisector[m,n]

Table: Constraint style

GEOTHER GeoProof
midpoint(A,B,C) | is_-midpoint C A B
parallel(A,B,C,D) | parallel ABCD
X. Chen (BUAA) ADG '10 (Munich)

July 24, 2010

3/30

Start with Geometry Software

Geometry problems (drawing or proving) are specified by applying similar

(or same) concepts which are implemented differently in these systems.

Table: Constructive style

Cinderella GeoGebra
Perpendicular(a;A) PerpendicularLine[A,a]
Circumcircle(A;B;C) Circle[A,B,C]
AngleBisector(m;n;A) AngleBisector[m,n]

Table: Constraint style

GEOTHER GeoProof
midpoint(A,B,C) | is_-midpoint C A B
parallel(A,B,C,D) | parallel ABCD

The constructions and predicates can be viewed as concepts.

X. Chen (BUAA) ADG "10 (Munich)

July 24, 2010

3/30

Standardizing Problem Specifications

It is needed to standardize the formats of specifications so that the same
specified problems can be processed by different geometry software
systems via specific interfaces.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 4/30

Standardizing Problem Specifications

It is needed to standardize the formats of specifications so that the same
specified problems can be processed by different geometry software
systems via specific interfaces.

Related work
e Intergeo project offers a common file format for specifying dynamic
diagrams. However, the format only works for constructive style.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 4/30

Standardizing Problem Specifications

It is needed to standardize the formats of specifications so that the same
specified problems can be processed by different geometry software
systems via specific interfaces.

Related work
e Intergeo project offers a common file format for specifying dynamic
diagrams. However, the format only works for constructive style.

e GeoCode is a generic proof scheme standard providing routine codes
that can be interfaced with different CAS or provers for proving and DGS
for drawing.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 4/30

More — Macro Constructions

Many systems provide facilities of macro expansions enabling users to
customize constructions for use.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 5/30

More — Macro Constructions

Many systems provide facilities of macro expansions enabling users to
customize constructions for use.
However, this functionality

@ works internally in the systems;

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 5/30

More — Macro Constructions

Many systems provide facilities of macro expansions enabling users to
customize constructions for use.
However, this functionality

@ works internally in the systems;
@ works for constructive style.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 5/30

Standardizing Macro Constructions

It is needed to standardize macro constructions so that one can specify
problems in terms of customized concepts by defining macros.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 6/30

Standardizing Macro Constructions

It is needed to standardize macro constructions so that one can specify
problems in terms of customized concepts by defining macros.

Related work
e GEOTHER provides a standard form for specifying the entries contained
in the predicates routines. However, defined predicates are independent

with each other.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 6/30

Standardizing Macro Constructions

It is needed to standardize macro constructions so that one can specify
problems in terms of customized concepts by defining macros.

Related work

e GEOTHER provides a standard form for specifying the entries contained
in the predicates routines. However, defined predicates are independent
with each other.

e GeoCode provides the facility for users to define new functions in terms
of exited functions. However, these functions are defined only in the
constructive style.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 6/30

Objectives

@ A general geometry programming language is needed in which one
can easily and naturally define geometric concepts and specify
problems in terms of the customized concepts (for both constructive
and constraint type).

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 7/30

Objectives

@ A general geometry programming language is needed in which one
can easily and naturally define geometric concepts and specify
problems in terms of the customized concepts (for both constructive
and constraint type).

@ The facility is needed for transforming the specified problems into the
ones that target systems can identify and manipulate via specific
interfaces.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 7/30

Idea

Create a collection of the
definitions for
customized concepts

Create problem
specification

Perform
transformation

Simplified
| specification
of the problem

=

Invoke DGS for Invoke geometry
drawing the diagrams provers for
automatically automated proving

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 8/30

Idea

Create a collection of the
definitions for
customized concepts

Create problem
specification

Perform
transformation

Simplified
specification

Invoke DGS for Invoke geometry
drawing the diagrams provers for
automatically automated proving

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 8/30

Outline

e Geometry Programming Language

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 9/30

Concept Symbols

@ Customized concepts: point, line, intersection, midpoint, area, etc.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 10/30

Concept Symbols

@ Customized concepts: point, line, intersection, midpoint, area, etc.
@ Built-in concepts:

Constants: 0, 7, etc.

Pointers (labels): A, B, [, etc.

Types: Point, Line, Segment, Length, Degree, Number, Boolean, etc.
Algebra concepts: times, plus, sin, squre, etc.

Set concepts: list, choose, ismember, etc.

Logic concepts: and, or, not.

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 10/30

Formalization of Geometric Concepts

@ Abstract concepts: A ::Point, [/ ::Line, ¢ ::Triangle, etc.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 11/30

Formalization of Geometric Concepts

@ Abstract concepts: A ::Point, [::Line, ¢ ::Triangle, etc.
@ Entity concepts:

o Geometric objects: intersection(/::Line,m::Line),
perpendicularline(A::Point,/::Line),
circumcenter(triangle(A::Point,B::Point,C::Point)), etc.

o Geometric quantities: length(segment(A::Point,B::Point)),
ratio(a::GeometricQuantity,b::GeometricQuantity), etc.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 11/30

Formalization of Geometric Concepts

@ Abstract concepts: A ::Point, [::Line, ¢ ::Triangle, etc.
@ Entity concepts:

o Geometric objects: intersection(/::Line,m::Line),
perpendicularline(A::Point,/::Line),
circumcenter(triangle(A::Point,B::Point,C::Point)), etc.

o Geometric quantities: length(segment(A::Point,B::Point)),
ratio(a::GeometricQuantity,b::GeometricQuantity), etc.

@ Boolean concepts:

o Geometric relations: parallel(/::Line,m::Line), isin(A::Point,0::Circle),
tangent(o::Circle, p::Circle) etc.

o Quantity relations: It(a::Length,b::Length),
equal(c::Degree,d::Degree), etc.

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 11/30

Constructing Geometric Clauses

Clauses are constructed by using instances (of concepts).

@ Reference clauses: A:=point(), P:=intersection(/,m), etc.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 12/30

Constructing Geometric Clauses

Clauses are constructed by using instances (of concepts).

@ Reference clauses: A:=point(), P:=intersection(/,m), etc.
@ Boolean clauses: perpendicular(l,m), incident(A,l), etc.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 12/30

Constructing Geometric Clauses

Clauses are constructed by using instances (of concepts).

@ Reference clauses: A:=point(), P:=intersection(/,m), etc.
@ Boolean clauses: perpendicular(l,m), incident(A,l), etc.
@ Compound clauses:

o Nesting: collinear(foot(D,line(A,B)),foot(D,line(A,C)),foot(D,line(B,C)));
o Give: give(triangle(A,B,C));

e Configuration: configuration(E:=intersection(line(A,B),line(C,D)),
F:=intersection(line(A,C),line(B,D)));

Declare: declare(A::Point,B::Point,/::Line);

Logic: and(parallel(l,m),incident(A,l));

List: {A;B;C},{point();point();midpoint(segment(A,B))};

Set: choosediff(A;B;C,2));

Algebra: times(2,length(segment(A,B))).

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 12/30

Formalization of Geometry Definitions

Format
Definition(Target concept, Return body, Nondegeneracy condition) J

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 13/30

Formalization of Geometry Definitions

Format

Definition(Target concept, Return body, Nondegeneracy condition) J

For example,

e Definition(intersection(/::Line,m::Line), [A::Point where and(incident(A,l),
incident(A,m))], intersect(l,m))

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 13/30

Formalization of Geometry Definitions

Format
Definition(Target concept, Return body, Nondegeneracy condition) J

For example,

e Definition(intersection(/::Line,m::Line), [A::Point where and(incident(A,l),
incident(A,m))], intersect(l,m))

e Definition(completequadrilateral(A::Point,B::Point,C::Point,D::Point,
E::Point,F::Point), [configuration(E:=intersection(line(A,B),line(C,D)),
F:=intersection(line(A,C),line(B,D)))], null)

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 13/30

Formalization of Geometry Definitions

Format
Definition(Target concept, Return body, Nondegeneracy condition) J

For example,

e Definition(intersection(/::Line,m::Line), [A::Point where and(incident(A,l),
incident(A,m))], intersect(l,m))

e Definition(completequadrilateral(A::Point,B::Point,C::Point,D::Point,
E::Point,F::Point), [configuration(E:=intersection(line(A,B),line(C,D)),
F:=intersection(line(A,C),line(B,D)))], null)

¢ Definition(diagonal(completequadrilateral(A::Point,B::Point,C::Point,D::Point,
E::Point,F::Point)),{[segment(A,D)];[segment(B,C)]; [segment(E,F)]}, null)

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 13/30

Formalization of Geometry Problems

Format
Problem(Name, Problem type, Hypothesis, Objective) J

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 14/30

Formalization of Geometry Problems

Format
Problem(Name, Problem type, Hypothesis, Objective) J

For example,

e Problem(Simson,Theorem,assume(A:=point(),B:=point(),C:=point(),
D:=point(),incident(D,circumcircle(triangle(A,B,C)))),
show(collinear(foot(D,line(A,B)),foot(D,line(A,C)),foot(D,line(B,C)))))

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 14/30

Formalization of Geometry Problems

Format
Problem(Name, Problem type, Hypothesis, Objective) J

For example,

e Problem(Simson,Theorem,assume(A:=point(),B:=point(),C:=point(),
D:=point(),incident(D,circumcircle(triangle(A,B,C)))),
show(collinear(foot(D,line(A,B)),foot(D,line(A,C)),foot(D,line(B,C)))))

e Problem(Pappus,Theorem,assume(declare(C::Point,F::Point,P::Point,
Q::Point,R::Paint),A:=point(),B:=point(),D:=point(),E:=point(),
give(Pappus(A,B,C,D,E,F,P,Q,R))), show(collinear(P,Q,R)))

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 14/30

Outline

e Geometric Statement Simplification

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 15/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)
eDef: line(A::Point,B::Point) £ [::Line

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line
eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

eDef5: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,/))]

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

eDef5: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,l))]

eDef,: intersection(l::Line,m::Line) = [A::Point where incident(A,!) A incident(A,m)]

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

eDef;: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,l))]

eDefy: intersection(/::Line,m::Line) = [A::Point where incident(A,) A incident(A,m)]
> foot(D, ine(E,F)) —— foot(Dline(E,F))

substitution

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

eDef5: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,l))]

eDef,: intersection(l::Line,m::Line) = [A::Point where incident(A,!) A incident(A,m)]

, Def, . Defs
> foot(D,line(E,F)) ———— foot(D,line(E,F))
substitution substitution

[intersection(perpendicularline(D,line(E,F)),line(E,F))]

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,l::Line) £ [intersection(perpendicularline(A,!),l)]

eDef5: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,l))]

eDef,: intersection(l::Line,m::Line) = [A::Point where incident(A,!) A incident(A,m)]

Def Def>
> foot(D,ine(E,F)) —— foot(D,line(E,F))——s
substitution substitution

Defs,D .
[intersection(perpendicularline(D,Iine(E,F)),Iine(E,F))]M[varl ::Point where

substitution

incident(D,vary) A perpendicular(vary,line(E,F)) A incident(var,vary) A
incident(var,line(E,F))]

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 16/30

Clause Simplification

Clause Simplification denotes the process of transforming the involved
instances by applying the corresponding definitions.

Example (constraint style)

eDef: line(A::Point,B::Point) £ [::Line

eDef,: foot(A::Point,/::Line) = [intersection(perpendicularline(A,l),!)]

eDefs: perpendicularline(A::Point,/::Line) = [m::Line where incident(A,m) A
perpendicular(m,l))]

eDefy: intersection(l::Line,m::Line) = [A::Point where incident(A,/) A incident(A,m)]

De, De,
> (foot(D,line(E,F)) b—f> foot(D,line(E,F)) b—f>
substitution substitution
Def3,De; i
[intersection(perpendicularline(D,line(E,F)),line(E,F))] &[varl ::Point where

substitution

incident(D,varg) A perpendicular(vary,line(E,F)) A incident(var,vary) A
incident(vary,line(E,F))]

We adopt eager (inner most) strategy to deal with the nesting cases.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 17/30

Statement Simplification

Statement Simplification denotes the process of transforming problem
specifications by using the related definitions.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 18/30

Statement Simplification

Statement Simplification denotes the process of transforming problem
specifications by using the related definitions.

Example (constraint style)

Problem(Simson,Theorem,assume(A:=point(),B:=point(),C:=point(),
D:=point(),incident(D,circumcircle(triangle(A,B,C)))),
show(collinear(foot(D,line(A,B)),foot(D,line(A,C)),foot(D,line(B,C)))))
definitions

_—

simplification
Problem(Simson,Theorem,assume(declare(vary::Point,var; ::Point,var;::Line,
vary::Point,var,::Line,vars::Point,varg::Line,var; ::Point),
A:=point(),B:=point(),C:=point(),D:=point(),equal(distance(vary,D),distance
(vary,vary)),equal(distance(vary,var;),distance(vary,A)),equal(distance
(vary,A),distance(vary,B)),equal(distance(vary,A),distance(vary,C),...),
show(incident(vars,line(vars,vary))))

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 18/30

How to select/match definition for simplification?

We use type matching to select the “correct” definitions for simplifying
instances.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 19/30

How to select/match definition for simplification?

We use type matching to select the “correct” definitions for simplifying
instances.

Table: context table for the current statement

label geobject
point()
point()
point()
point()
perpendicularline(A,line(C,D))

~| O] O | >

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 19/30

How to select/match definition for simplification?

We use type matching to select the “correct” definitions for simplifying
instances.

Type for instance

Type(foot(D,line(A,B))) = foot(point(),line(point(),point()))
Type(intersection(/,line(C,D))) =
intersection(perpendicularline(point(),line(point(),point())),line(point(),point()))

Table: context table for the current statement

label geobject
point()

point()
point()
point()
perpendicularline(A,line(C,D))

~| O] O | >

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 19/30

How to select/match definition for simplification?

We use type matching to select the “correct” definitions for simplifying
instances.

Type for instance

Type(foot(D,line(A,B))) = foot(point(),line(point(),point()))
Type(intersection(/,line(C,D))) =
intersection(perpendicularline(point(),line(point(),point())),line(point(),point()))

Table: context table for the current statement

label geobject
point()
point()
point()

point() Type for concept

perpendicularline(A,line(C,D))

~| O] O | >

Type(foot(A::Point,/::Line)) = foot(Point,Line)
Type(intersection(m::Line,l::Line)) = intersection(Line,Line)

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 19/30

How to select/match definition for simplification?

We use type matching to select the “correct” definitions for simplifying
instances.

Type for instance

Table: context table for the current statement Type(foot(D,line(A,B))) = foot(point(),line(point(),point()))
Type(intersection(/,line(C,D))) =
intersection(perpendicularline(point(),line(point(),point())),line(point(),point()))

label geobject
point()
point()
point()

point() Type for concept
perpendicularline(A,line(C,D))

~| O] O | >

Type(foot(A::Point,/::Line)) = foot(Point,Line)
Type(intersection(m::Line,l::Line)) = intersection(Line,Line)

Generally, type for instance is not equal to type for concept. How to match
them?

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 19/30

Type Order

Geometry definitions indicate the order of types. We define type upgrade
to match types.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 20/30

Type Order

Geometry definitions indicate the order of types. We define type upgrade
to match types.

Example

e point() < Point

e line(Point,Point) < Line

e perpendicularline(Point,Line) < Line

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 20/30

Type Order

Geometry definitions indicate the order of types. We define type upgrade
to match types.

Example

e point() < Point

e line(Point,Point) < Line

e perpendicularline(Point,Line) < Line

intersection(perpendicularline(point(),line(point(),point())),line(point(),point()))
< intersection(perpendicularline(Point,Line),Line) < intersection(Line,Line)

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 20/30

Type Order

Geometry definitions indicate the order of types. We define type upgrade
to match types.

Example

e point() < Point

e line(Point,Point) < Line

e perpendicularline(Point,Line) < Line

intersection(perpendicularline(point(),line(point(),point())),line(point(),point()))
< intersection(perpendicularline(Point,Line),Line) < intersection(Line,Line)
Type Matching Rule

Let I and C be an instance and a concept, if Type(/) < Type(C), then the
definition of C can be used to simplify instance 1.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 20/30

How to Perform Simplification?

Instances are not alone but associated with extra information. Normal form
is needed to normalize the specification of instance during the process of
simplification.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 21/30

How to Perform Simplification?

Instances are not alone but associated with extra information. Normal form

is needed to normalize the specification of instance during the process of
simplification.

Normal Form
[where constraint context configuration with nondegeneracyCondition] J

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 21/30

How to Perform Simplification?

Instances are not alone but associated with extra information. Normal form

is needed to normalize the specification of instance during the process of
simplification.

Normal Form
[where constraint context configuration with nondegeneracyCondition] J

The simplified instances will be normalized into this form at each step of
simplification process.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 21/30

Analysis

Geometry Statement Simplification is a series of operations of
transforming all the instances involved in the geometric statement until no
instances can be simplified further.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 22/30

Analysis

Geometry Statement Simplification is a series of operations of
transforming all the instances involved in the geometric statement until no
instances can be simplified further.

Termination

The process terminates only if there is no loop in the type structure
determined by the definitions.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 22/30

Analysis

Geometry Statement Simplification is a series of operations of
transforming all the instances involved in the geometric statement until no
instances can be simplified further.

Termination

The process terminates only if there is no loop in the type structure
determined by the definitions.

Usability

The simplified problem specifications can be interfaced with Geometry
software systems.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 22/30

More Demo

@ Reuse definitions and problem specifications.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 23/30

More Demo

@ Reuse definitions and problem specifications.

@ Dealing with multiple returns.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 23/30

Outline

© Implementation

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 24/30

Tools and Open Source Packages

@ XML based;

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 25/30

Tools and Open Source Packages

@ XML based;
@ Java;

X. Chen (BUAA) ADG '10 (Munich)

July 24, 2010

25/30

Tools and Open Source Packages

@ XML based;

@ Java;

@ JDIC package: JDesktop Integration Components;
@ XSLT: SAXON;

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 25/30

Tools and Open Source Packages

XML based;

Java;

JDIC package: JDesktop Integration Components;
XSLT: SAXON;

GeoGebra;

GEOTHER.

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 25/30

Outline

e Conclusion and Future Work

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 26/30

Conclusion and Future Work

Conclusion

We have presented a geometry programming language for specifying
geometric concepts, definitions, and problems.
The specifications are

@ encoded easily and naturally;

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 27/30

Conclusion and Future Work

Conclusion

We have presented a geometry programming language for specifying
geometric concepts, definitions, and problems.
The specifications are

@ encoded easily and naturally;
@ used in both constraint and constructive cases;

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 27/30

Conclusion

We have presented a geometry programming language for specifying
geometric concepts, definitions, and problems.
The specifications are

@ encoded easily and naturally;
@ used in both constraint and constructive cases;

@ transformed into ones that can be interfaced with available geometry
software systems.

X. Chen (BUAA) ADG "10 (Munich) July 24,2010 27/30

Future Work

The geometry programming language is still at a preliminary stage. The
following problems should be considered further.
@ prove the correctness of transformation;

@ transform the specifications in this language into natural language
and the other way round;

@ transform the specifications in this language into algebraic
counterparts and interface with CAS.

X. Chen (BUAA) ADG '10 (Munich) July 24, 2010 28/30

Project

Data

. e-Text
Draw

Prove

Lounge

H3L

Overview Research Team Publications Censortium ' Related Links ~ Contact

Geo* - Geometry on Computer

The Geo* project attempts to bring the contents of traditional geometry to electronic form and to make geometric computation
reasoning. drawing. and knowledge management dynamic. automatic. or interactive on computer.

Current research in this project focuses on the

+ identification, formalization, representation, and creation of geometric knowledge data and objects

« design. implementation. and analysis of algorithms and software tools for geometric computation. reasoning. data
processing. and diagram generation

* development of methodologies and systems for geometric knowledge presentation and management.

* design and implementation of geomeiric specification and programming languages.

Welcome to visit our project home at http://geo.cc4cm.org/

en (BUAA)

ADG '10 (Munich) July 24, 2010

29/30

Conclusion and Future Work

Thanks!

X. Chen (BUAA) ADG '10 (Munich) July 24,2010 30/30

	Motivation
	Geometry Programming Language
	Geometric Statement Simplification
	Implementation
	Conclusion and Future Work

